

2-way and 3-way characterised control valves

Edition 2024-04/A

Table of contents

The Belimo characterised control valve 4 Valve characteristic curves Advantages of the Belimo characterised 5 control valve Elements of the characterised control valve 6 Selection of K_{vs} values **Project planning** Relevant information Closing and differential pressures Pipeline clearances 2-way characterised control valves 3-way characterised control valves Diverting circuit Water quality Strainer Open/close valve **Design and dimensioning** Control characteristics Design when using glycol Flow characteristics Note Dimensional diagrams for 2-way and 3-way characterised control valves R2/3../R6/7..R Application Media Fluid temperatures Formula K_{vs} Dimensional diagram for 2-way characterised control valves R4.. / R5.. Application Media Fluid temperatures Formula K_{vs} Dimensional diagram for 2-way characterised control valves R6..W..-S8 Application Media Fluid temperatures Formula K_{vs}

Table of contents

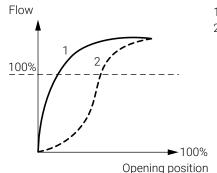
Dimensional diagram for 2-way characterised control valves R4..D(K) $\,$

	Application	
	Media	13
	Fluid temperatures	— IS
	Formula K _{vs}	
	Differential pressure	
	Operating pressure ratio XF	14
	Cavitation factor Z	
Selection table 2-way chara	acterised control valves DN 1050	15
Selection table 2-way chara	acterised control valves DN 15150	16
Selection table 3-way chara	acterised control valves DN 1550	17
Dimensional and selection	table 2-way and 3-way open/close ball valves	18
Definitions		
_	Formula symbols	19
	Further documentation	—— 19

The Belimo characterised control valve

Valve characteristic curves

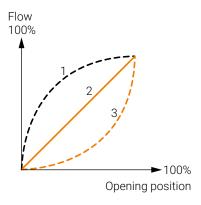
To enable high control stability, a hydronic control element must have a flow characteristic that complements the non-linear characteristic curve of the heat exchanger in the HVAC system.


Characteristic curves of an ideal hydronic control element

- 1 Typical heat exchanger characteristic curve
- 2 Resultant thermal output
- 3 Equal-percentage valve characteristic curve

An equal-percentage valve characteristic curve is desired so that a linear behaviour of the heat dissipation will result, depending on the opening position of the control element (so-called path characteristic curve). The flow rate thus increases very slowly whilst the control element begins to open. This characteristic curve is extremely deformed with a standard ball valve.

Characteristic curves of an ideal hydronic control element


1 Resultant thermal output 2 Flow characteristic standard ball valve

- The reason for this is that a standard ball valve has an extremely high flow coefficient (K_{vs} value) compared to its nominal diameter, which is many times greater than that of a comparable globe valve. A standard ball valve is therefore poorly suited to control tasks:
- Flow coefficient too large for the model
- In the partial-load range, the flow rate cannot be sufficiently controlled

Advantages of the Belimo characterised control valve

Belimo has successfully solved the problem of the distorted path characteristic curve of the ball valve. A so-called characterised disc corrects the characteristic curve of the ball valve to make it an equal-percentage one. The flow rate is now influenced by the ball bore and the v-shaped opening in the characterised disc.

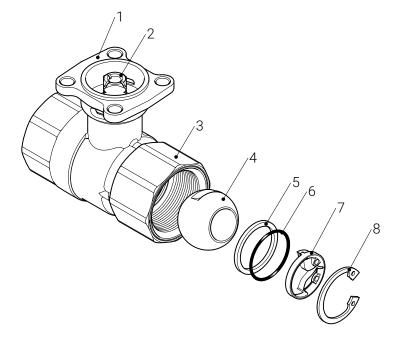
Characteristic curves of the Belimo characterised control valve

- 1 Heat exchanger characteristic curve
- 2 Resultant thermal output
- 3 Equal-percentage characteristic curve Belimo characterised control valve

The K_{VS} value is reduced and corresponds to that of a globe valve of the same nominal diameter. To eliminate the need to install pipe reducers in most cases, each nominal diameter is also available with a corresponding selection of different K_{VS} values.

The properties of the Belimo characterised control valve have many advantages:

- Equal-percentage characteristic curve
- No input jump upon opening
- Excellent control stability via characterised disc



- Kvs value comparable with globe valve of the same nominal diameter
- Less pipe reduction required
- Better partial-load behaviour and higher control stability
- Tight-closing (2-way version)
- Prevention of the system's tendency to oscillate

Elements of the characterised control valve

- 1 Mounting flange
- 2 Spindle with flow marking
- 3 Valve body
- 4 Ball made of stainless steel
- 5 Gasket
- 6 O-ring
- 7 Characterised disc
- 8 Locking ring

Internal thread according to ISO 7-1 External thread according to ISO 228/1

Selection of K_{vs} values

The optimum selection of different K_{VS} values with the same nominal diameter leads to:

- Better controllability
- Lower installation costs

The Belimo characterised control valve product range includes 2-way and 3-way versions. These are offered in various nominal diameters with a selection of different K_{VS} values. Every characterised control valve is supplied together with the matching Belimo rotary actuator.

Project planning

Relevant information

The data, information and limit values on the data sheets of the Belimo characterised control valves must be observed and complied with.

Closing and differential pressures

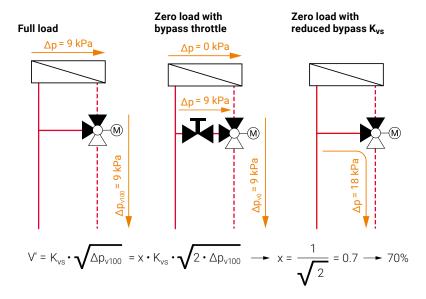
Refer to the data sheets for the maximum permissible closing and differential pressures.

Pipeline clearances

The minimum clearances between the pipelines and the walls and ceilings required for project planning depend not only on the valve dimensions but also on the design. The dimensions can be found in the associated data sheets.

2-way characterised control valves

Characterised control valves are throttling devices. Installation in the return flow is recommended with high temperatures. This leads to a lower thermal load on the sealing elements in the valve. The prescribed direction of flow must be observed.


3-way characterised control valves

3-way characterised control valves are mixing devices. The direction of flow must be maintained under all loads. Installation in the supply or return is dependent on the hydronic circuit selected. The 3-way characterised control valve must not be used as a diverting valve.

Diverting circuit

Thanks to the reduced flow rate in the bypass, no balancing valve in the bypass line is required for the diverting circuit.

Bypass 70% K_{vs}

Water quality

Adhere to the water quality requirements specified in VDI 2035.

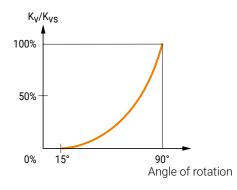
Strainer

The Belimo characterised control valve is a regulating device. Central strainers are recommended to ensure the control task in the long term.

Open/close valve

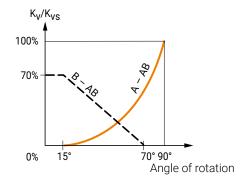
Make sure that sufficient open/close valves are installed on the plant for service purposes.

Design and dimensioning


Control characteristics

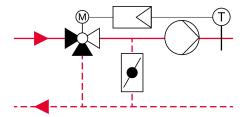
To ensure a valve attains good control characteristics thus a long service life for the control element, it needs to be correctly designed with the correct valve authority. The valve authority $P_{\rm V}$ is the benchmark for the control characteristics of the valve in combination with the hydronic network. The valve authority is the relation between the differential pressure of the fully open valve at nominal flow and the total pressure drop in the variable-flow path or of the completely closed valve. The higher the valve authority, the better the control characteristics. The smaller the valve authority $P_{\rm V}$ becomes, the more the operational behaviour of the valve will deviate from the linearity, i.e. the poorer the flow control will be. A valve authority $P_{\rm V}$ of >0.5 is desired in everyday practice.

Design when using glycol


To reduce the freezing point of water, salt was added to the water in the past. These were called brine applications. Today glycol is used and we talk about cold agents. Depending on the concentration of the cold agent used (type of glycol) and the fluid temperature, the density of the water-glycol mixture varies between 1 and 9 percent. The resultant volume deviation is less than the permissible volume tolerance of the valve's K_{vs} value (by ±10 percent according to VDI/VDE 2173) and as a rule need not be taken into account, even if glycol mixtures require a slightly higher K_{vs} value. Depending on the type of glycol, compatibility with the valve materials used must be guaranteed and the permissible maximum concentration (50 percent) must not be exceeded. Furthermore, the specifications of the glycol manufacturer with respect to minimum concentration are to be taken into account.

Flow characteristics

2-way characterised control valve


The characteristic curve is equal percentage with a characteristic curve factor n(gl) = 3.2 or 3.9. This guarantees stable control characteristics in the upper partial load range. The curve is linear in the lower opening range between 0...30% of the operating range. This ensures outstanding control characteristics, including in the lower partial load range. The operating range 0...100% corresponds to an angle of rotation of 15...90%.

3-way characterised control valve

3-way characterised control valves have the same behaviour as 2-way characterised control valves across the control path A – AB. The flow in the bypass B – AB is designed to be 70% of the K_{VS} value of the control path (A – AB). This compensates for the often low resistance in the bypass line. The characteristic curve in the bypass is linear.

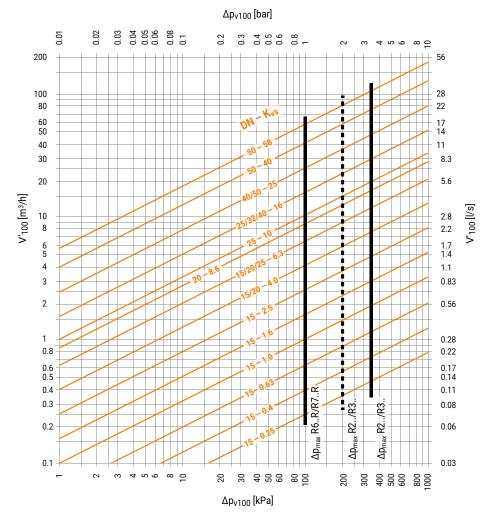
Note

Due to the ball design, the 3-way characterised control valve is suitable only to a limited extent for conventional supply temperature control. When using these characterised control valves, it is therefore recommended that control of the supply temperature be designed as a double mixing circuit.

No limitations exist for mixing circuits in air heaters or for injection circuits.

Dimensional diagram for 2-way and 3-way characterised control valves R2/3.. / R6/7..R

Application


These characterised control valves are used in open (R2.. and R6..R) and closed chilled and warm water systems for modulating water-side control of air handling units and heating systems.

Media

Chilled and warm water, water with glycol up to max. 50% vol.

Fluid temperatures

The permissible fluid temperatures can be found in the corresponding valve and actuator data sheets.

Formula K_{vs}

 $K_{vs} = \frac{V'_{100}}{\sqrt{\frac{\Delta p_{v100}}{100}}}$

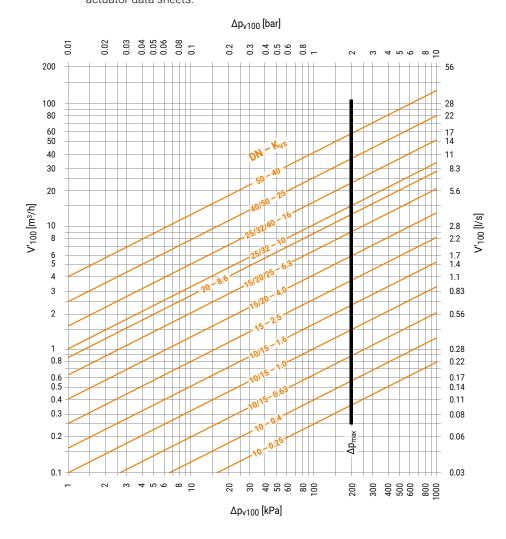
 $\begin{array}{lll} \Delta p_{v100} \colon [kPa] \\ V'_{100} & \colon [m^3/h] \\ K_{vs} & \colon [m^3/h] \end{array}$

■ Δp_{max} Maximum permissible differential pressure for long service life across control path A − AB, with reference to the whole opening range

- Δ**p**_{max} Maximum permissible differential pressure for low noise operation

Dimensional diagram for 2-way and 3-way characterised control valves R4../R5..

Application


These characterised control valves are used in open and closed chilled and warm water systems for modulating water-side control of air handling units and heating systems.

Media

Chilled and warm water, water with glycol up to max. 50% vol.

Fluid temperatures

The permissible fluid temperatures can be found in the corresponding valve and actuator data sheets.

Formula K_{vs}

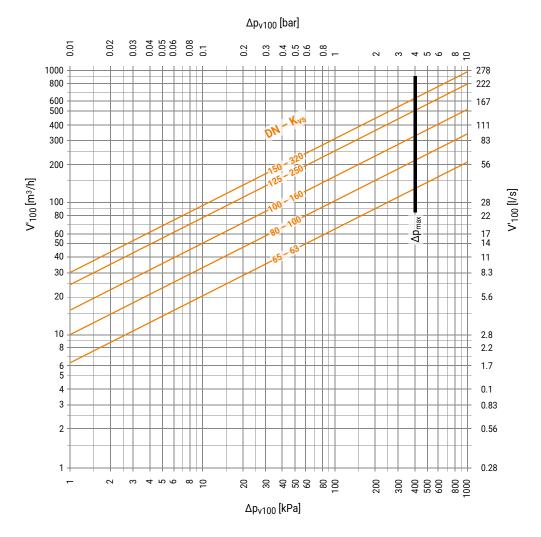
$$K_{vs} = \frac{V'_{100}}{\sqrt{\frac{\Delta p_{v100}}{100}}}$$

 Δp_{v100} : [kPa] V'_{100} : [m³/h] K_{vs} : [m³/h]

 Δp_{max} Maximum permissible differential pressure for long service life across control path A – AB, with reference to the whole opening range

Dimensional diagram for 2-way characterised control valves R6..W..-S8

Application


These characterised control valves are used in closed chilled and warm water systems for modulating water-side control of air handling units and heating systems.

Media

Chilled and warm water, water with glycol up to max. 50% vol.

Fluid temperatures

-10...120°C

Formula K_{vs}

$$K_{vs} = \frac{V'_{100}}{\sqrt{\frac{\Delta p_{v100}}{100}}}$$

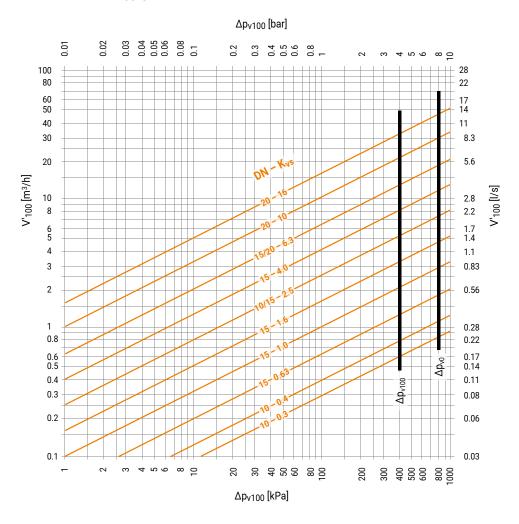
 $\begin{array}{lll} \Delta p_{v100} \colon [kPa] \\ V'_{100} & \colon [m^3/h] \\ K_{vs} & \colon [m^3/h] \end{array}$

____ Δp_{max}

Maximum permissible differential pressure for long service life across control path A – AB, with reference to the whole opening range

Dimensional diagram for 2-way characterised control valves R4..D(K)

Application


These characterised control valves are used in open and closed chilled, warm and hot water systems for modulating water-side control of water in district heating applications.

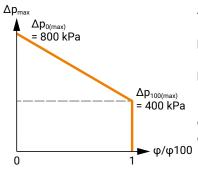
Media

Chilled, warm and hot water, potable water (upon request), water with glycol up to max. 50% vol.

Fluid temperatures

2...130°C

Formula K_{vs}


$$K_{vs} = \frac{V'_{100}}{\sqrt{\frac{\Delta p_{v100}}{100}}}$$

 $\begin{array}{lll} \Delta p_{v100} \colon [kPa] \\ V'_{100} & \colon [m^3/h] \\ K_{vs} & \colon [m^3/h] \end{array}$

 Δp_{v0} Maximum permissible differential pressure for long service life with closed ball valve

 Δp_{v100} Maximum permissible differential pressure for long service life with opened ball valve

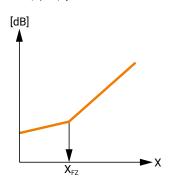
Differential pressure

 Δp_{max} = maximum permissible differential pressure

p_{v0} = maximum permissible differential pressure with closed valve

 p_{v100} = maximum permissible differential pressure with valve

completely open


φ = Delay angle

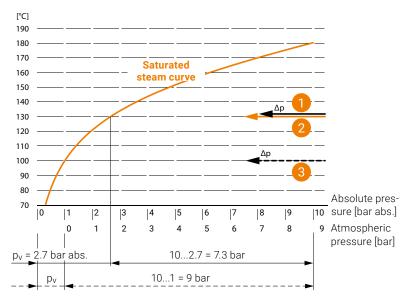
φ₁₀₀ = Delay angle with valve completely open

Operating pressure ratio X_F

Formula:

$$X_F = \frac{\Delta p}{p_1 - p_V} < X_F \quad \Delta p < X_{FZ} (p_1 - p_V) \quad X_F \le Z = X_{FZ}$$

 $\Delta p = p1 - p2 = differential pressure via the valve [bar]$


p_v = Steam pressure water [bar abs.]

 X_F = Operating pressure ratio X_{FZ} = Start cavitation of the valve

= Cavitation factor of the valve

Cavitation factor Z

Diagram:

Example: Z = 0.3

1 No cavitation $X_F = 2 / 7.3 = 0.27$

2 Incipient cavitation $X_F = 2.5 / 7.3 = 0.34$

3 No cavitation $X_F = 2.5 / 9 = 0.28$

Flange (EN 1092-1/4)

R6..R ∆p_{max}: 100 kPa

Air-bubble tight, leakage rate A

-10...100°C

(EN 12266-1)

ps: 600 kPa

Selection table 2-way characterised control valve DN 10...50

Pipe connection

External thread G (ISO 228-1)

Fluid temperature

2...130°C

Leakage rate

Air-bubble tight, leakage rate A (EN 12266-1)

Max. differential pressure

Permissible operating pressure

R4..D(K) ∆p_{max}: 400 kPa

ps: 2700 kPa

Valve design

Valve characteristic curve

External thread

40 40 40 40	
40	
<u> </u>	
+ 0	
40	
40	
40	
40	
40	
40	
40	
40	

Flange

Valve type R6R	DN	K _{vs}	PN	
R6015RP63-B1	15	0.63	6	
R6015R1-B1	15	1.0	6	
R6015R1P6-B1	15	1.6	6	
R6015R2P5-B1	15	2.5	6	
R6015R4-B1	15	2.5	6	
R6020R6P3-B1	20	6.3	6	
R6025R10-B2	25	10	6	
R6032R16-B3	032R16-B3 32	16	6	
R6040R25-B3	40	25	6	
R6050R40-B3	50	40	6	

Selection table 2-way characterised control valve DN 15...150

Pipe connection

Internal thread Rp (ISO 7-1)

Fluid temperature -10...120°C

Air-bubble tight, leakage rate A Leakage rate

(EN 12266-1)

Flow characteristic Equal percentage

Max. differential pressure **R2..** Δp_{max} : 350 kPa (200 kPa for low-noise operation)

ps: 1600 kPa

Permissible operating pressure

External thread G (ISO 228-1)

-10...120°C

Air-bubble tight, leakage rate A (EN 12266-1)

Equal percentage

R4.. Δp_{max}: 200 kPa

ps: 1600 kPa

Flange ISO 7005-1/2

-10...120°C

Air-bubble tight, leakage rate A

(EN 12266-1) Equal percentage

R6..W.. ∆p_{max}: 400 kPa

p_s: 1600 kPa

Valve design

Valve characteristic curve

Internal thread

— — — —			
Valve type R2	DN	K _{vs}	PN
R2015-P25-S1	15	0.25	40
R2015-P4-S1	15	0.40	40
R2015-P63-S1	15	0.63	40
R2015-1-S1	15	1.0	40
R2015-1P6-S1	15	1.6	40
R2015-2P5-S1	15	2.5	40
R2015-4-S1	15	4.0	40
R2015-6P3-S1	15	6.3	40 40 40
R2020-4-S2	20	4.0	
R2020-6P3-S2	20	6.3	
R2020-8P6-S2	20	8.6	40
R2025-6P3-S2	25	6.3	40
R2025-10-S2	25	10	40
R2025-16-S2	25	16	40
R2032-16-S3	32	16	25
R2040-16-S3	40	16	25
R2040-25-S3	40	25	25
R2050-25-S4	50	25	25
R2050-40-S4	50	40	25

External thread

Valve type R4	DN	K _{vs}	PN	
R409	15	0.63	40	
R410	15	1.0	40	
R411	15	1.6	40	
R412	15	4.0	40	
R413	15	6.3	40	
R417	20	4.0	40	
R418	20	6.3	40	
R419	20	8.6	40	
R422	25	6.3	40	
R423	25	10	40	
R424	25	16	40	
R431	32	16	25	
R438	40	16	25	
R439	40	25	25	
R448	50	25	25	
R449	50	40	25	

Flange

Valve type R6W	DN	K _{vs}	PN	
R6065W63-S8	65	63	16	
R6080W100-S8	80	100	16	
R6100W160-S8	100	160	16	
R6125W250-S8	125	250	16	
R6150W320-S8	150	320	16	

Selection table 3-way characterised control valves DN 15...50

Pipe connection

Internal thread Rp (ISO 7-1)

-10...120°C Fluid temperature

Leakage rate Leakage rate A (EN 12266-1) /

Bypass B - AB: Leakage class I

Max. differential pressure $R3.. \Delta p_{max}$: 350 kPa

(200 kPa for low-noise operation)

Permissible operating ps: 1600 kPa

pressure

External thread G (ISO 228-1)

-10...120°C

Control path A - AB: air-bubble tight, Control path A - AB: air-bubble tight, Control path A - AB: air-bubble Leakage rate A (EN 12266-1) /

Bypass B - AB: Leakage class I

R5.. Δp_{max}: 200 kPa

ps: 1600 kPa

Flange (EN 1092-1/4)

-10...100°C

Leakage rate A (EN 12266-1) / Bypass B - AB: Leakage class I

R7..R ∆p_{max}: 100 kPa

ps: 600 kPa

Valve design

Valve characteristic curve

Internal thread

Valve type R3	DN	K _{vs}	PN
R3015-P25-S1	15	0.25	40
R3015-P4-S1	15	0.40	40
R3015-P63-S1	15	0.63	40
R3015-1-S1	15	1.0	40
R3015-1P6-S1	15	1.6	40
R3015-2P5-S1	15	2.5	40
R3015-4-S1	15	4.0	40
R3020-4-S2	20	4.0	40
R3020-6P3-S2	20	6.3	40
R3025-6P3-S2	25	6.3	40
R3025-10-S2	25	10	40
R3032-16-S3	32	16	25
R3040-16-S3	40	16	25
R3040-25-S4	40	25	25
R3050-25-S4	50	25	25
R3050-40-S4	50	40	25
R3050-58-S4	50	58	25

External thread

Valve type R5	DN	$\mathbf{K}_{\mathbf{vs}}$	PN
R509	15	0.63	40
R510	15	1.0	40
R511	15	1.6	40
R512	15	2.5	40
R513	15	4.0	40
R517	20	4.0	40
R518	20	6.3	40
R522	25	6.3	25
R523	25	10	25
R531	32	16	25
R538	40	16	25
R548	50	25	25

i lalige			
Valve type R7R	DN	K _{vs}	PN
R7015RP63-B1	15	0.63	6
R7015R1P6-B1	15	1.6	6
R7015R4-B1	15	4.0	6
R7020R6P3-B1	20	6.3	6
R7025R10-B2	25	10	6
R7032R16-B3	32	16	6
R7040R16-B3	40	16	6
R7050R25-B3	50	25	6

Dimensional and selection table 2-way and 3-way open/close ball valves

Internal thread	External thread	Flange	Valve type R2 / R4 / R6	Valve type R3 / R5 / R7	Valve type R3	DN	K _{vs}	Δp _{max} [kPa] 0.1	Δp _{max} [kPa] 1.0	Δp _{max} [kPa] 3.0	Δp _{max} [kPa] 10.0
	_		R410DK			10	4.0	0.13	0.40	0.69	1.3
•					R3015-BL1	15	5.5	0.17	0.55	1.0	1.7
	•		R415	R515		15	8.6	0.27	0.86	1.5	2.7
•					R3032-BL2	32	9.0	0.28	0.9	1.6	2.8
_					R3025-BL2	25	10	0.32	1.0	1.7	3.2
•					R3020-BL2	20	11	0.35	1.1	1.9	3.5
			R415D			15	12	0.38	1.2	2.1	3.8
_					R3040-BL3	40	14	0.44	1.4	2.4	4.4
_			R2015-S1	R3015-S1	_	- 15					
		_	R6015R-B1	R7015R-B1			15	0.47	1.5	2.6	4.7
_					R3032-BL3	32					
			R430	R530		32	16	0.51	1.6	2.8	5.1
	_		R420	R520		20	21	0.66	2.1	3.6	6.6
_			- ·		R3050-BL3	50	24	0.76	2.4	4.2	7.6
	_		R420D			20	25	0.79	2.5	4.3	7.9
_			R2025-S2	R3025-S2		_					
	_		R425	R525		25	26	0.82	2.6	4.5	8.2
		-	R6025R-B2	R7025R-B2							
_			R2040-S3	R3040-S3		– 40	31	1.0	3.1	5.4	9.8
		•	R6040R-B3	R7040R-B3							
_			R2020-S2	R3020-S2		_ 20					
		•	R6020R-B1	R7020R-B1							
_			R2032-S3	R3032-S3		_	32	1.0	3.2	5.5	10.1
	_		R432	R532		32	32	1.0	0.2	0.0	10.1
		-	R6032R-B3	R7032R-B3							
	_		R440	R540		40					
_					R3040-BL4	40	47	1.5	4.7	8.1	14.9
_			R2050-S4	R3050-S4		_					
	_		R450	R550		50	49	1.6	4.9	8.5	15.5
		-	R6050R-B3	R7050R-B3							
_					R3050-BL4	50	75	2.4	7.5	13.0	23.7

Formula K_{vs}

 $V'_{100} = K_{vs} \sqrt{\frac{\Delta p_{v100}}{100}} \quad \begin{array}{l} \Delta p_{v100} \colon [kPa] \\ V'_{100} \: \colon [m^3/h] \\ K_{vs} \: \colon [m^3/h] \end{array}$

Definitions

Formula symbols

 $\mathbf{K_{V}}$ The flow coefficient $K_{V}[m^{3}/h]$ is the specific flow of a valve with a defined delay

angle with reference to 100 kPa (1 bar).

The K_{ν} value changes, depending on the valve position.

The flow coefficient is determined for a water temperature of 5...40°C.

 $\mathbf{K_{vs}}$ The K_v value in reference to the nominal delay angle is referred to as the K_{vs}

value

Flow coefficient at 100% valve opening (90° angle of rotation)

Ps Permissible operating pressure kPa

V'₁₀₀ Nominal flow rate with Vp_{v100}

ΔT Temperature difference between supply and return

Δp_{v0} Maximum permissible differential pressure for long service life with closed ball

valve

 Δp_{v100} Differential pressure across the completely opened valve at V'₁₀₀

Δp_{max} Maximum permissible differential pressure across control path A – AB, with

reference to the whole opening range

 Δp_s Close-off pressure: The specified tightness of the valve is ensured up to this

value

 $\mathbf{P}_{\mathbf{V}}$ Valve authority: the benchmark for the control characteristics of the valve in

combination with the hydronic network. The valve authority is the relation at nominal load between the differential pressure of the fully open valve (Δp_{v100}) at nominal flow and the total pressure drop in the variable-flow path or of the

completely closed valve.

Further – Notes for project planning – general notes

documentation – Technical data sheets

- Installation instructions

Brochure – 8 reasons to use a characterised control valve

- Brochure - Energy efficiency and comfort in buildings

All inclusive.

Belimo as a global market leader develops innovative solutions for the controlling of heating, ventilation and air-conditioning systems. Damper actuators, control valves, sensors and meters represent our core business.

Always focusing on customer value, we deliver more than only products. We offer you the complete product range for the regulation and control of HVAC systems from a single source. At the same time, we rely on tested Swiss quality with a five-year warranty. Our worldwide representatives in over 80 countries guarantee short delivery times and comprehensive support through the entire product life. Belimo does indeed include everything.

The "small" Belimo devices have a big impact on comfort, energy efficiency, safety, installation and maintenance.

In short: Small devices, big impact.

5-year warranty

On site around the globe

Complete product range

Tested quality

Short delivery times

Comprehensive support