Stavke u vašoj mapi za preuzimanje

Mapa za preuzimanje je prazna
Stavka/stavke u mapi za preuzimanje


Healthy indoor air:
the seven essentials

On average, we spend about 90% of our lives indoors and breathe in around 12,000 litres of air every day. We assume the air in buildings is "clean" and will not harm our health. Therefore, it is astonishing how little users and operators actually know about indoor air quality at their premises. Essential variables such as air humidity, CO2 content or VOC concentration are hardly ever measured and even less often displayed.

Belimo interviewed consulting engineers and experts in the ventilation sector around the world to identify the priorities when aspiring to create a healthy indoor air environment in a building. In the process, seven essential factors for ensuring healthy indoor air in non-residential buildings have emerged.

  1. Continuous and reliable measurement, display and monitoring of indoor air quality
  2. Accurate amount of air to the zone and controlled removal of contaminated air
  3. Well designed air dilution and airflow pattern
  4. Active pressurisation of envelope and spaces
  5. Correct temperature and humidity conditioning
  6. Effective filtration
  7. Proper amount of outdoor air

1. Continuous and reliable measurement, display and monitoring of indoor air quality

Ideally, air humidity, CO2 content or VOC concentration are measured by sensors for the monitoring of air quality. This is because only measured variables can be controlled. From today's point of view, both the measurement and the display of these values should represent the minimum standard for indoor air quality measurement.

It is important that relative humidity indoors is held between 40-60%. Dry air droplets from an infected person speaking or sneezing easily evaporate and the contained virus travels further in the room as a light aerosol. If the humidity is higher, droplets do not evaporate as quickly and fall to the ground in a shorter distance. Thus, many bacteria and viruses are considerably more contagious in dry air conditions, which can dehydrate mucous membranes and weaken the immune system.

CO2 concentration of more than 1000 ppm (parts per million) decreases the brain's ability to concentrate; starting at 2000 ppm and higher, it can lead to fatigue or even headaches. CO2 levels in indoor air is an excellent indicator of potential bio-contamination, an example is the COVID-19 viruses. If the CO2 value is high due to increased occupancy and limited air exchange, high potential risk from infectious aerosols could result.

Volatile Organic Compounds (VOCs) are organic compounds that originate from many different sources, including perfume, paint, printers, carpeting and building materials. Even low concentrations of VOCs can irritate the eyes, nose, or throat and indicate insufficient fresh air intake.

It is essential to measure these variables using suitable sensors so that appropriate measures can be implemented, for example, ventilation, air purification or humidification.

2. Accurate amount of air to the zone and controlled removal of contaminated air

Central ventilation units usually supply air to several zones in a building. It is important that each room receives the exact amount of fresh air it needs. If the number of people in a room increases, e.g., in a larger meeting room, one would expect the air supply to increase accordingly. Similarly, the polluted air must also be removed from the room. To ensure this, zones and rooms must be supplied individually with variable air volume (VAV). If, for example, a room sensor detects excessively high CO2 content, the VAV units are opened and the room is flooded with additional fresh air.

3. Well designed air dilution and airflow pattern

An important factor is the way in which the air introduced into a room flows through that room and then exits it again. Ideally, fresh air flows undiluted from the bottom up past a person and is then extracted directly from the room. It must be ensured that indoor air does not "swirl" around the room several times or become trapped in certain zones of the room. Modern airflow simulations enable typical flow patterns in a room to be studied in detail. The correct design, placement and orientation of air outlets can help prevent major healthy air errors.

4. Active pressurisation of envelope and spaces

Air hygiene in a room is negatively affected by unwanted air currents entering a zone from outside (e.g., a busy road) or from other rooms (e.g., cafeteria). This typically occurs when air-pressure ratios are not properly balanced. Especially in connection with the spread of COVID-19 aerosols in buildings, there has been much discussion about "cross-contamination" between different rooms. The use of VAV controllers in the supply air and extract air of rooms and the use of differential pressure sensors and controllers between zones can prevent such undesired airflow.

5. Correct temperature and humidity conditioning

In a central ventilation system, the supply air can be conditioned relatively precisely to the desired temperature in the air handling unit by heating or cooling coils. High-quality control components at the coils such as the Belimo Energy Valve™ ensure that this is not only done with high precision but also in an energy-efficient manner.

In addition to temperature, humidity is also crucial for healthy indoor air. If aerosols or viruses present in a room encounter dried-out mucous membranes, the risk of infection increases considerably. It has also been shown that viruses on dry surfaces survive longer than under more humid conditions. Proper humidification of the room air (40-60% relative humidity) is therefore an essential factor for safe indoor air.

6. Effective filtration

To prevent contaminants from entering indoor spaces through supply air ducts, filters must be integrated into the air handling unit. In systems where part of the extract air is mixed back into the supply air, suitable filters must be used to prevent contamination from infectious microbes (for example, HEPA filter H13 pursuant to EN1822:2009). To ensure that monitoring of these filters is effective, pressure sensors and dynamic airflow measurement can be used. If the contamination of the filter increases, the pressure drop across the filter also increases. By simultaneously measuring the volumetric flow through the filter, a relatively accurate statement can be made as to whether and when the filter needs to be replaced.

7. Proper amount of outdoor air

Today, a large proportion of smaller and medium-sized non-residential buildings do not have an automated, mechanical fresh air supply. It is often assumed that from time to time, users ventilate by opening a window. If this does not occur, the concentration of infectious aerosols can greatly increase. A ventilation system with central air conditioning is therefore part of the minimum standard equipment when planning a new building or renovation. Many countries have issued recommended or mandated standards on mechanical ventilation in commercial buildings and required minimum air-exchange rates, depending on the type of building and the number of occupants (for example ASHRAE 62.1 Ventilation requirements). Other considerations focus on poor inner-city air quality in many countries. Ideally, outside air variables are measured before air is mechanically introduced into a building. An automated system can supply more outside air when pollution levels from traffic and industry are low and return to the minimum required ventilation rates when pollution levels increase.

Molimo vas da prihvatite postavke kolačića kako biste pogledali ovaj video.

Requirements for building technology from a medical Doctor’s perspective

Dr. Walter Hugentobler is an academic and medical advisor with 30 years of expertise in the reciprocal relation of indoor air quality, buildings, and health. In his presentation, he gives a prescription for a diversified, balanced and healthy microbiome in resident and office buildings. His wish list to an HVAC company in the interest of maintaining the health of building occupants confirms Belimo's contributions to healthy indoor air.

Download the complete presentation from Dr. Hugentobler:

Influence of indoor air quality on our health

People spend approximately 90 percent of their time indoors, and breathe 12,000 litres of air per day. It is therefore important to understand the powerful influence that indoor air quality has on our well-being. Belimo shares its deep insights into the effects of indoor humidity, VOC and central air treatment systems and offers valuable suggestions for your health.

A study on the influence of air quality in schools

The platform joined forces with the Zurich Teachers' Association (Züricher Lehrerverband) and the Zurich Lung Organisation (Organisation Lunge Zürich) to discover how air quality affects school children and teachers. In November 2016, installed measuring devices in over 250 classrooms.

Read the study to see how the mere installation of these measuring devices affected the ventilation habits of teachers and students.

Our products in use for healthier indoor air quality

Belimo Sensors – The foundation of comfort

Belimo HVAC sensors offer the highest level of reliability, easy installation and seamless integration into common building automation systems. The innovative housing design allows for quick and tool-free installation, easy commissioning and provides IP65 / NEMA 4X protection. The product range includes precise sensors for measuring temperature, humidity, pressure, CO2 and volatile compounds (VOCs) as well as the flow in pipe and duct applications.

Refer to the regional websites for more information: